[55]スピロイドギヤ

図 55.1 スピロイドギヤ

55.1 概要

スピロイドギヤは、一定リードのテーパピニオンが、かさ歯車 形の大歯車にかみ合うもので歯数比は10~300程度までの広い範 囲に使用され、かみ合い率は大きく(ε>3以上)、すべり率は 割合小さく、更に、歯の接触も組み立て誤差に鈍感であるためバ ックラッシも容易に調整可能です.また、ウォームギヤの場合、 潤滑方向は、ウォームの回転方向と接触線方向が同じであるため 抜け側の潤滑は厳しいですが、スピロイドギヤは、小歯車の回転 方向と接触線が、ほぼ直角方向であることから潤滑には非常に有 利です.このことから、歯車材料は、鋼歯車対としても使用が可 能です.また、ウォームギヤは、ホイールの外側にウォームを配 置しますが、スピロイドギヤは、大歯車の内側に小歯車を配置し ますので歯車全体の容積を小さくすることができます.

本ソフトウェアで生成するスピロイドギヤの歯形は,理論歯形 で生成しているため図 55.8~55.10 のような接触線を得ることが できますが, Machine Design¹⁾では,スパイラルベベル盤で歯切り 加工していて近似歯形であるため歯面の一部でのみ接触している ことがわかります.

55.2 ソフトウェアの構成

ソフトウェアの構成を表 55.1 に示します.表中の〇は,基本ソフトウェアに含まれ, 〇はオプションです.

No.	項 目	掲載項	構成
1	基準ラックの設定	55.3	0
2	歯車諸元と寸法	55.4	0
3	組図	55.5	0
4	歯形計算	55.6	0
5	レンダリング	55.7	\bigcirc
6	歯形修整	55.8	0
7	歯形データ出力	55.9	0
8	強度計算(鋼×鋼,鋼×Ni 青銅)	55.10	0
9	接触解析	55.11	0
10	測定データ	55.12	0
11	HELP 機能	55.13	0
12	設計データ管理	55.14	0

表 55.1 ソフトウェアの構成

55.3 プロパティ

基準ラックを図 55.2 で設定します. ここで基準ラックの□にチ ェックを入れると基準ラックの実寸法図を表示することができま す. ここでは、並歯としたときの例を示します.

図 55.2 基準ラック

55.4 歯車諸元と寸法

図 55.3 では、モジュール、歯数を入力して[TAB]キーを押すと 進み角から歯元 R まで標準値を表示します. ここでは、内端側歯 幅と外端側歯幅を若干変更して歯車諸元を設定しています. そし て、この歯車諸元では、図 55.4 のように、かみ合い率は *cr*=4.13 で あることがわかります.

♥ 寸法諸元					
項目	記号	単位	ピニオン	ギヤ	
中央歯直角モジュール	mn	mm	3.50000		
歯 数	z		1	45	
平均歯直角圧力角	α	deg	20.0	00000	
ねじれ方向			右ねじれ ~	左ねじれ	
進み角/中央ねじれ角	γ/β	deg	5.00000 📃	41.99979	
オフセット量	E	mm	77.	.50000	
ピッチ円すい角	γ	deg	4.77303	83.01977	
中央基準円直径	d	mm	40.15800	211.93647	
内端側歯幅	bi	mm	25.00000	18.00000	
外端側歯幅	bo	mm	30.00000	12.00000	
凹面圧力角	α1	deg	10.00000	30.00000	
凸面圧力角	α2	deg	30.00000	10.00000	
中央歯末のたけ	ha	mm	3.50000	3.50000	
中央歯元のたけ	hf	mm	4.37500	4.37500	
中央歯直角円弧歯厚	sn	mm	5.40000	5.40000	
中央基準歯先円すい角	δa	deg	5.60400 📃	84.89748 📃	
中央基準歯底円すい角	δf	deg	3.73435 🔜	80.67310	
中央歯先R	ra	mm	0.50000	0.50000	
凹面中央歯元R	rf1	mm	1.20000	****	
凸面中央歯元R	rf2	mm	0.44000	****	
確定 キャンセル クリア					

図 55.3 歯車諸元

♥ 寸法結果						
項目	記号	単位	ピニオン	ギヤ		
ギヤ中心から小歯車基準まで	Xm	mm	72	.2704		
ギヤ外径	do2	mm	***	235.9365		
ギヤ内径	di2	mm	****	175.9365		
有効歯たけ	h	mm	7.8750			
リード	L	mm	11.4598	****		
ビニオン基準角	σp	deg	43.0002	*****		
バックラッシ	jn	mm	0.1956			
かみ合い率	εγ		4.12926			

図 55.4 寸法結果

55.5 組図

図 55.5 の組図で全体のバランスがわかり,補助フォームで図の 拡大や距離計測をすることができます.また,図 55.6 に寸法記号 を示します.なお,図中の水色線は,大歯車の歯幅中央の直径を 示しています.

55.6 歯形計算

歯形計算では、図55.7のように歯面分割数を設定し、歯形を計 算します.また、小歯車の歯形は、A形、N形、I形を選択するこ とができますのでここではI形として計算を進めます.

55.7 レンダリング

レンダリングと補助フォームを図 55.8 に示します.

図 55.8 レンダリング

補助フォームで観察角度を変更してかみ合い接触線を確認する と図 55.9 のように同時接触線は4本であり図 55.10 では5本であ ることから図 55.3 のかみ合い率 &=4.13 と一致します.また,大 歯車凸面の接触線も図 55.11 のように4本(小歯車の回転角を変 更すれば5本)を確認することができます.なお,この接触線の 様子は,F.L. Litvin のスピロイドの論文²⁾と一致しています.一方, スパイラルベベルギヤ盤で歯切りした歯形を基にした論文³⁾では 図 55.9 のような接触線とはならないため同時接触線 4~5本とい う歯形は無理ということになります.

図 55.9 かみ合い接触線 4本 (大歯車凹面)

図 55.10 かみ合い接触線 5本 (大歯車凹面)

図 55.11 かみ合い接触線4本 (大歯車凸面)

図 55.9~55.11 のように同時接触線が 4~5 本であれば負荷が分 担されるため1 歯に作用する負荷が軽減され,且つ,小歯車の回 転方法と接触線の方向が,ほぼ直行していることから潤滑に対し て非常に有利ということがわかります.

歯面修整することでレンダリング表示をすると図 55.12 のよう に接触の様子が変わっていることがわかります.

図 55.12 レンダリング (歯面修整)

55.8 歯面修整

歯先端部の端部接触を避けるため小歯車に歯先修整を施す場合, 図 55.13~55.16 のように設定することができ、大歯車も小歯車の 操作と同様,図 55.17 のように設定することができます.

<u>確定</u>キャンセル 図 55.16 歯形修整(簡易入力),小歯車

クリア

0	歯車修整(Gear)			-		×
修整	歯形:歯すじ 〜	歯形分割数 1	~		倍率	500 \checkmark
теј	歯 形 歯すじ 歯形歯すじ	, , , LTIF	TIPJ ,	(-)		LTIF
X axis	scale =4.8 (+)	Yaxis scale =500	X axis scale =4.8	(+)	1 Yaxis so	cale =500
	(-)			()		
1N	+ + + + +	+ + + + + 0UT		1	 	
	oogia - 1 4 CT 2	···· • • • • • • • • • • • • • • • • •	キャンセル	1911 P	111 PART	ポグラフ
1	15517 黄	形・歯す	*修慗 (表	示)	大诛	宙

55.9 歯形データ出力

生成した歯形は、図 55.18 で出力することができます。歯形作 図例を図 55.19 に示します.

図 55.18 歯形ファイル出力(修整歯形)

55.10 強度計算

強度計算は、Machine Design¹⁾に基づいていますますが、本ソフ トウェアではかみ合い率を考慮しています..強度計算は、図55.20 のように小歯車のトルクと回転速度を入力し、図 55.21 で材料を 選択することで強度結果を表示します.

♥ 強度計算 □						
項目	記号	単位	ピニオン	ギヤ		
トルク	Т	Nim	20.0000	900.0000		
回転速度	n	rpm	2000.0000	44.4444		
周 速	v	m/s	1.3386			
すべり速度	VS	m/s	3	.8889		
材料			鋼 ×	鋼		
心部硬度		HRC	60			
材料損傷係数	M		203000			
材料係数	FM		0.0020			
摩擦係数	μ		0.0291			
許容摩耗係数	Kw		905.9770			
寸法係数	Fc		19.8781			
速度係数	Fw		56.4399			
歯数比係数	Fr		2.1495			
効 率	η	%	77	.18		
実トルク	Te	N-m	168	.2209		
許容トルク	Ts	N-m	773.0613			
曲げ安全率	Sfs		4.596			
摩耗許容トルク	TGo	N-m	725.7014			
摩耗安全率	SfM		4.314			
セルフロック			作用しない			
	確?	Ê I	キャンセル	<i></i> ታሀፖ		

図 55.20 強度計算

55.11 接触解析 (オプション)

図 55.22 で接触解析の設定を行い[確定]すると生成した歯形を 基にして伝達誤差解析,歯当たり(接触距離)や,すべり速度を 計算します.そして,かみ合い接触を基にして全かみ合い率(接 触解析では ϵ_r =4.15,図 55.4 では ϵ_r =4.13)を計算します.伝達誤差 解析結果,フーリエ解析結果,ワウ&フラッタを図 55.23~55.25 に示します.

図 55.22 接触解析設定

図 55.23 伝達誤差(TE=0.058µm)

図 55.24 フーリエ解析

歯当たり解析結果を図 55.26 に、すべり速度解析結果を図 55.27 に示します.また、接触距離のセル表示を図 55.28 および図 55.29 に、すべり速度の接触距離のセル表示を図 55.30 および図 55.31 に 示します.

図 55.26 歯当たり解析 (接触距離)

図 55.27 すべり速度

図 55.29 歯当たり解析(接触距離,ギヤ)のセル表示

図 55.30 すべり速度 (ピニオン)のセル表示

55.12 測定データ (オプション)

Call Zeiss 三次元測定機の測定データの設定を図 55.32 に示しま す. 歯形分割数と測定逃げ量および測定基準距離を設定すること により測定点座標と法線ベクトルを TXT ファイルに出力します. 測定ファイル例を図 55.33 に示します.

55.13 HELP 機能

操作途中で使い方がわからない場合は、アクティブ画面で[F1] キーを押すことで図 55.34 のように説明画面を表示します.

55.14 設計データ管理

データベースは, Microsoft Access Database, Microsoft SQL Server そして ORACLE MySQL Server に対応しています. データベース の設定画面を図 55.35 に示します.

※Microsoft SQL Server および ORACLE MySQL Server は、インストールさ れている必要があります.

▶ データベースの設定						
データベースサーバーの	種類	Microsoft	Access Databa	se ~		
Microsoft Access Database						
データベース名	Spiro	id.mdb				
データベースの場所 C:¥ProgramData¥AMTEC¥Spiroid						
図 55.35 データベースの設定						

引用文献

1) W.D. Nelson, Machine Design, Spiroid Gearing, 1961-2-16, Vol.33, No.4, pp.136-144 (1961)

2) F.L. Litvin, M. De Donno, Computerized design and generating of modified spiroid worm gear drive with low transmission errors and stabilized contact, Computer. Methods in applied mechanics and engineering. 162, pp.195 (1998)

 Michael J. Herberger, Flex Rudolph, Bjorn Sievers, Efficient concepts for high ratio angular gear boxes, VDI-Berichte Nr. 2422, pp.801-813, (2023)